Archiv für den Monat: Januar 2017

Neuer wirtschaftlicher Energiespeicher – altes Funktionsprinzip neu entdeckt und weiterentwickelt

Wie Natronlauge Sommerwärme für den Winter speichert

Dampflokomotiven, die keinen Rauch ausstoßen: Diese spektakuläre Erfindung, die der Aachener Ingenieur Moritz Honigmann 1883 zum Patent anmeldete, könnte heute als Energiespeicher für Furore sorgen. Schweizer Ingenieure haben einen Speicher gebaut, der die Wärme des Sommers bis zum Winter speichern kann. Er funktioniert mit Natronlauge.

Feuerlose Dampflokomotive des Ingenieurs Moritz Honigmann in Aachen

In Aachen wurde die feuerlose Dampflokomotive des Ingenieurs Moritz Honigmann ein Jahr lang eingesetzt. Ihre Energie bezog die Lok aus konzentrierter Natronlauge. Der Kessel mit der Lauge ist deutlich hinter dem Lokführer zu erkennen. Jetzt wird die Technik genutzt, um einen neuen Energiespeicher für Wärme zu entwickeln.

Foto: Aachener Verkehrsbetriebe Aseag/Wikipedia gemeinfrei

Sie fuhren in den 1880-er Jahren in Aachen und in Leipzig, eine weitere feuerlose Dampflok war in Berlin-Charlottenburg unterwegs. Doch durchsetzen konnte sich die neuartige Bahn des Ingenieurs Moritz Honigmann nicht. Aber die Technik, die Honigmann nutzte, um die Fahrenergie in einem Kessel voller Natronlauge zu speichern und bei Wikipedia gut beschrieben wird, die haben nun Schweizer Ingenieure des Forschungsinstituts Empa in Zürich weiter entwickelt, um einen Wärmespeicher zu bauen.

Vier Jahre lang haben die Schweizer im Rahmen des europäischen Forschungsprojektes Comtes geforscht und nun einen Speicher im Labor gebaut, der seit einigen Monaten zuverlässig arbeitet. Und wie funktioniert die Technik?

Den Schweizern geht es nicht darum, Strom zu speichern, sondern um Wärme. Sie wollen die Wärme, die im Sommer zu Genüge anfällt, so aufsparen, dass diese im Winter zum Heizen oder für die Erzeugung von Warmwasser zur Verfügung steht.

Technik von Honigmann weiter entwickelt

Ähnlich wie Honigmann vor 130 Jahren nutzen die Schweizer Ingenieure eine chemische Reaktion. Die Idee: Gießt man in ein Becherglas mit festem Natriumhydroxid (NaOH) Wasser, dann wird die Mischung heiß. Die Verdünnungsreaktion ist also exotherm: Chemische Energie wird in Form von Wärme frei.

Á

1883 meldete der Ingenieur Moritz Honigmann seine feuerlose Dampflok zum Patent an. Durch das Einleiten von Wasserdampf in konzentrierte Natronlauge wurde starke Wärme frei, die Honigmann nutzte um heißen Dampf für den Antrieb zu erzeugen.

Foto: Mähr, Vergessene Erfindungen/TU Berlin

Zugleich ist Natronlauge stark hygroskopisch und kann Wasserdampf aufnehmen. Die so gewonnene Kondensationsenergie heizt die Natronlauge weiter auf. Diese Wärme lässt sich also nutzen. Es ist die gleiche Wärme, mit der Honigmann seine feuerloses Dampfloks betrieben hat.

Sommerwärme im Speichertank

Auch der umgekehrte Weg ist möglich. Führt man verdünnter Natronlauge Energie in Form von Wärme zu, verdampft das Wasser, die Natronlauge wird konzentriert und speichert auf diese Weise die ihr zugeführte Energie. Diese konzentrierte Natronlauge lässt sich über Monate und sogar Jahre aufbewahren. Die Energie geht nicht verloren. Wird der Natronlauge später wieder Wasser zugeführt, wird wieder Wärme frei.

Besonders interessant ist, dass sich die Natronlauge in Tanks transportieren lässt. Genau dies hatte ja Honigmann in seinen Lokomotiven genutzt: Diese mussten keine Kohle hinter sich herziehen, sondern die Lokomotive ließ sich einfach mit konzentrierter Lauge wieder aufladen.

Die Empa-Forscher Robert Weber und Benjamin Fumey hatten sich nun das Ziel gesetzt eine Anlage zu entwickeln, mit der sich ein Einfamilienhaus mit Wärme versorgen lässt. Der erste Prototyp funktionierte zunächst nicht richtig. Die Wissenschaftler hatten auf einen so genannten Fallfilmverdampfer gesetzt. Diese werden in der Lebensmittelindustrie verwendet, um Orangensaft zu Konzentrat einzudicken. Doch die zähflüssige Natronlauge umfloss den Wärmetauscher nicht richtig, sondern bildete dicke Tropfen. Die Natronlauge nahm zu wenig Wasserdampf auf, die übertragene Wärmemenge blieb zu gering.

Á

Ingenieur Benjamin Fumey an seiner Versuchsanlage im Empa-Labor in der Schweiz: Seit Herbst 2016 funktioniert der Wärmezyklus im Energiespeicher aus Natronlauge zuverlässig. Er kann Wärme über Monate und Jahre speichern. So lässt sich beispielsweise die Sommerwärme nutzen, um im Winter eine Fußbodenheizung zu betreiben.

Foto: Empa

Fumey hatte dann die rettende Idee: Das zähflüssige Speichermedium Natronlauge müsste langsam und spiralförmig entlang eines Rohrs hinabfließen, auf dem Weg Wasserdampf aufnehmen und die entstehende Hitze an das Rohr abgeben. Der umgekehrte Weg – das Aufladen des Mediums – sollte mit der gleichen Technik funktionieren, nur andersherum. Diese Idee funktionierte. Das Beste: Die Ingenieure konnten spiralförmige Wärmetauscher aus handelsüblichen Durchlauferhitzern nutzen.

Ideal für eine Fußbodenheizung

Allerdings mussten die Ingenieure erst einmal herausfinden, wie Lauge und Wasserdampf optimal arbeiten. Welche Konzentrationsschwankungen sind für den Wirkungsgrad optimal? Welche Temperaturen soll das zu- und das ablaufende Wasser haben? Für das Entladen des Speichers ist Wasserdampf mit einer Temperatur von 5 bis 10 °C optimal. Diese Temperatur erreichen die Schweizer mit Wärme aus einer Erdsonde.

Dabei läuft 50-prozentige Natronlauge außen über das Spiralrohr des Wärmetauschers nach unten und wird in der Wasserdampfatmosphäre auf 30 % verdünnt. Dabei erhitzt sich das Heizungswasser im Inneren des Rohrs auf rund 50 °C. Das wäre zum Beispiel ideal für eine Fußbodenheizung.

Wärmeenergie lässt sich über lange Zeit speichern

Beim Wiederaufladen des Speichers sickert die 30-prozentige, „entladene“ Natronlauge um das Spiralrohr herum nach unten. Im Inneren des Rohrs strömt 60 °C heißes Wasser, das  zum Beispiel aus einem Solarkollektor stammen kann. Das Wasser aus der Natronlauge verdunstet. Der Wasserdampf wird abgezogen und kondensiert. Die Natronlauge, die den Wärmetauscher nach dem Aufladen verlässt, ist wieder auf 50 % aufkonzentriert, also mit Wärmeenergie „geladen“.

Wärmetauscher aus Durchlauferhitzern brachten die Lösung: Die Natronlauge läuft spiralförmig am Rohr entlang, nimmt Wasserdampf auf und gibt Wärme ab.

Foto: Empa

„Auf diese Weise lässt sich Solarenergie in Form chemischer Energie vom Sommer bis in den Winter speichern“, sagt Empa-Forscher Fumey. Jetzt suchen die Schweizer Forscher nach Industriepartnern, die aus dem Labormodell eine kompakte Hausanlage bauen.

Eine ebenfalls ungewöhnliche Idee für einen Energiespeicher hatten Ingenieure der Universitäten in Frankfurt und Saarbrücken. Sie wollen Betonkugeln im Meer versenken, um den hohen Druck für die Speicherung von Offshore-Strom zu nutzen. Die ersten Kugeln werden derzeit auf dem Grund des Bodensees getestet.

Von Axel Mörer-Funk
Quelle: http://www.ingenieur.de/Themen/Energiespeicher/Wie-Natronlauge-Sommerwaerme-fuer-Winter-speichert
vom 20.01.2017

Graphen und seine Eigenschaften

Graphen-Schaum ist so viel stabiler als Stahl

Graphen ist wirklich ein Wundermaterial: Jetzt ist es gelungen, einen Schaum aus Graphen herzustellen mit ganz erstaunlichen Eigenschaften. Der Schaum ist zwar federleicht, aber um ein Vielfaches stabiler als Stahl. Wie das kommt?

Gyroid-Modell aus dem 3D-Drucker

Gyroid-Modelle aus dem 3D-Drucker wie dieses wurden benutzt, um die Stärke und mechanischen Eigenschaften eines neues leichten Materials zu testen.

Foto: Melanie Gonick/MIT

Graphen ist ein zweidimensionales Nanomaterial. Nur eine Atomlage dick besitzt die Kohlenstoffvariante lediglich in Breite und Länge eine Ausdehnung. Forscher des Massachusetts Institute of Technology (MIT) haben jetzt ein schwammartiges Material aus Graphen konstruiert, das nur rund fünf Prozent der Dichte von Stahl besitzt, aber zehnmal so stark ist. Es wurde mit einem hochauflösenden 3D-Drucker hergestellt.

Lücken in der Erforschung

Zwar gilt Graphen ja ohnehin unter anderem wegen seiner Härte als Wundermaterial, doch ist es bisher nur teilweise gelungen, diese Stabilität auf nutzbare dreidimensionale Graphen-Materialien zu übertragen.

Die Illustration zeigt die Ergebnisse der Simulationstests zur Zug- und Druckfestigkeit der 3D-Graphen-Struktur.

Foto: Zhao Qin

 

Einer der Gründe dafür: Bisher war nicht bekannt, welche Eigenschaften ein dreidimensionaler Graphen-Schaum braucht, um leicht und doch stabil zu sein. Das wollten Prof. Zhao Qin und seine MIT-Kollegen herausfinden und untersuchten dafür die Struktur von Schäumen und Gittern aus Graphen.

Graphen-Würfel mit Löchern

Dafür konstruierte das MIT-Team zunächst mithilfe sehr genauer Computermodelle einen Graphen-Würfel. Die Forscher schweißten 500 Blättchen des zweidimensionalen Graphen-Gitters mit 500 kugelförmigen Platzhaltern unter Hitze und hohem Druck zu dreidimensionalen, porösen Strukturen zusammen. Dabei lösten sich die Platzhalter auf, so dass an ihrer Stelle Hohlräume zurückblieben.

Dünnere Wände stabiler als dickere

Durch die Löcher ergibt sich ein Plus an Oberflächenstruktur, was dem Konstrukt Festigkeit verleiht, andererseits sorgen die Hohlräume für ein niedriges Gewicht. Tests ergaben, dass dieser Graphen-Schaum zehnmal stabiler und zugfester ist als Stahl, obwohl er nur fünf  Prozent von dessen Dichte besitzt.

Es zeigte sich bei den Tests aber auch, dass es die Würfel mit dünneren Wänden waren, die sich deutlich stabiler zeigten, als diejenigen mit dickeren Wänden. Letztere explodierten förmlich, als die Gewichte auf sie drückten. Die dünnere Variante hingegen behielt ihre Form und fiel kontrolliert zusammen.

Großes Potenzial

Die MIT-Forscher erklären das Versuchsergebnis damit, dass die dickeren Wände die durch den Druck ausgeübte Kraft als Spannungsenergie speichern und dann auf einmal freigeben, während die dünneren Wände kontinuierlich verformt werden. Ihre Erkenntnis: Graphen spielt zwar als Material für die Härte eine Rolle, aber entscheidender ist die geometrische Form.

„Man kann das Graphen durch irgendein anderes Material ersetzen. Die Geometrie ist der dominante Faktor. Sie hat das Potenzial, viele Dinge zu verändern“, sagt Markus Buehler, Chef der Abteilung Civil and Environmental Engineering am MIT.

So könnte die vom MIT entwickelte Struktur auch für Kunststoffe und Metalle genutzt werden, um ultraleichte, widerstandsfähige Materialien zu kreieren, etwa für den Bau von Brücken. Superleichte und ultrastabile Materialien wären auch optimal einsetzbar im Flugzeug- und Automobilbau gewünscht. Und nicht nur da.

Kleinste Glühlampe der Welt

Sie möchten mehr über Graphen erfahren? Hier stellen wir Ihnen eine industriefähige Lösung zur Produktion von Graphen vor, die von Forschern aus Aachen und Jülich entwickelt wurde.

Á

Kleinste Glühlampe der Welt: Sie besteht aus einem Graphenfilament zwischen zwei Elektroden. Das Material hält Temperaturen von mehreren Tausend Grad Celsius aus.

Foto: Young Duck Kim/Columbia Engineering

Und an dieser Stelle berichten wir über die kleinste Glühlampe der Welt, die aus einem Graphenfilament zwischen zwei Elektroden besteht. Das Material hält Temperaturen von mehreren Tausend Grad Celsius aus.

Von Martina Kefer
Quelle: http://www.ingenieur.de/Themen/Forschung/Graphen-Schaum-so-stabiler-Stahl
vom 20.01.2017

Materialforschung – Diamantbüschel sprießen in den Mikrohimmel

Diamanten sind auch für Quantenphysiker hochinteressante Materialien. Forscher aus Moskau haben nun ein Verfahren entwickelt, mit dem sich winzige Diamantstäbchen mit ungewöhnlichen Eigenschaften herstellen lassen.

12.01.2017, von Manfred Lindinger

Der Diamant lässt nicht nur die Herzen vieler Schmuckliebhaber höher schlagen. Auch im Werkzeugbau und in der Materialforschung schätzt man diese besondere Form von Kohlenstoff seit langem wegen seiner extremen Härte, außergewöhnlichen Wärmeleitfähigkeit sowie chemischen und thermischen Beständigkeit.

Aber auch für physikalische und technische Anwendungen werden Diamantkristalle immer interessanter. So kann man sie zur Fluoreszenz anregen, indem man etwa einzelne Stickstoffatome gezielt in das Kristallgefüge einbaut. Dadurch erhält man eine Quelle, die auf Knopfdruck einzelne Photonen abstrahlt. Solche Lichtquellen werden beispielsweise für die Quantenkryptographie benötigt, wo man mit Lichtteilchen geheime Nachrichten abhörsicher übertragen möchte.

Diamantstäbchen günstig hergestellt

Aber auch zum Bau von „kalten“ Kathoden eignen sich Diamantkristalle. Die Elektronen lassen sich effizient mit elektrischen Feldern aus der negativen Elektrode m Material herauslösen. Allerdings benötigt man für solche Anwendungen möglichst perfekte nadel- oder stäbchenförmige Diamantkristalle.

Materialforscher von der Lomonossow-Universität in Moskau haben ein Verfahren entwickelt, mit dem sich stäbchenförmige Kristalle auf recht einfache Weise und damit günstig herstellen lassen.

Victor Kleshch und seine Kollegen erzeugen zunächst dünne polykristalline Diamantfilme, indem sie Methan zusammen mit Wasserstoff aus der heißen Gasphase auf einer Siliziumunterlage abscheiden. Die Proben werden dann einige Stunden lang auf rund 700 Grad erhitzt und dabei Luftsauerstoff ausgesetzt. Das Ergebnis sind mehrere Nanometer dicke und einige Mikrometer lange Diamantstäbchen, die bündelweise aus der Oberfläche sprießen.

Quelle: http://www.faz.net/aktuell/wissen/physik-mehr/materialsynthese-diamantbueschel-spriessen-in-den-mikrohimmel-14612186.html vom 13.01.2017

Empfänger zwei Atome groß

Das winzigste Radio der Welt ist aus Diamant

Forscher von der Harvard Universität haben aus rosafarbenem Diamant das kleinste Radio der Welt gebaut. Der Radioempfänger ist nur zwei Atome groß, funktioniert aber wie bei einem ganz normalen, analogen Radio. Dabei könnte man das Diamant-Radio theoretisch sogar mit ins Weltall nehmen.

Das Herz dieses Radios ist genau zwei Atome groß, hält Temperaturen von mehreren Hundert Grad Celsius aus und würde sogar auf einer Raumsonde oder in einem eingesetzten Herzschrittmacher funktionieren. Forscher der Harvard University haben den kleinsten Radioempfänger der Welt aus rosafarbenem Diamant gebaut. Wie er funktioniert?
Defekt dient als Empfänger

Der Empfänger baut auf einem Defekt oder anders gesagt auf einer Verunreinigung im Kristallgitter eines Diamanten auf, die die Forscher selber vornehmen: Sie tauschen ein Kohlenstoff-Atom im Kohlenstoffgitter eines Diamanten durch ein Stickstoff-Atom aus, entfernen ein benachbartes Atom und konstruieren auf diese Weise ein so genanntes Stickstoff-Fehlstellen-Zentrum, abgekürzt NV-Zentrum (englisch nitrogen-vacancy). Solche Kristallgitterdefekte sorgen auch für die Färbung eines Diamanten, der als reines Kohlenstoffgitter farblos ist. Ein von den Forschern gebautes NV-Zentrum besteht also aus einem Stickstoff-Atom und einer Lücke und ist so groß wie zwei Atome. Als Bauteil im Diamant-Radio dient es als Empfänger.
Das undatierte Handout zeigt einen 12,76 Karat großen pinkfarbenen Diamanten. Der größte je in Australien gefundene pinkfarbene Diamant, der auf den Namen Argyle Pink Jubilee getauft wurde, kommt «unter das Messer».

Forscher der Harvard Universität haben aus rosafarbenem Diamant das kleinste Radio der Welt gebaut.
Und das geht so: Das grüne Licht eines Lasers regt Elektronen in NV-Zentren an. Die so behandelten Elektronen sind in der Lage, Radiowellen in optische Signale zu verwandeln: Sie geben die elektromagnetischen Wellen, die auf sie stoßen, als rotes Licht wieder ab. Eine einfache Photodiode verwandelt das optische Signal in Strom. Der wiederum wird wie beim normalen Radio von Lautsprechern in Ton umgewandelt. Und fertig ist das Radio.
Empfang verschiedener Radiostationen

Nun noch ein Elektromagnet angelegt und das Radio kann auch noch verschiedene Radiosender empfangen: Der Elektromagnet erzeugt ein starkes Magnetfeld um den Diamanten herum, mit dessen Hilfe die Empfangsfrequenz der NV-Zentren über eine Bandbreite von 300 Megahertz eingestellt werden kann.

Das Diamantradio aus Harvard ist auch noch extrem robust – hart wie Diamant sozusagen. Die Forscher spielten damit Musik bei 350 °C ab. Aufgrund der einzigartigen Eigenschaften des Diamanten könne dieses Radio in allen möglichen rauen Umgebungen oder auch im Weltall funktionieren, erklärt der Leiter der Forschungsarbeit, Professor Marko Loncar. Und sogar im menschlichen Körper: Diamant sei nämlich „biokompatibel“.
Von Susanne Neumann

Quelle: http://www.ingenieur.de/Fachbereiche/Elektronik/Das-winzigste-Radio-Welt-Diamant vom 05.01.2017