Archiv für den Monat: Mai 2017

Neue wirtschaftliche technische Möglichkeit zum Metallauftrag auf Gleitlageroberflächen

Additive manufacturing ‘revolutionising’ shipbuilding, says OR Laser

 

There’s a revolution brewing in the production of sliding bearings, according to OR Lasertechnologie

German industrial technology company OR Lasertechnologie says it’s only necessary to apply a layer of metal a few millimeters thick using the powder nozzle to reliably, cost-effectively, and easily protect the large shaft bearings used in ships from wear and tear. 

This represents something of a revolution in the shipbuilding industry, according to the company.

OR Laser says it develops and builds robot-assisted laser systems for direct metal deposition – which is similar to additive manufacturing – that take the production and repair of sliding bearings to an “innovative new level”.

The enormous container ships that now crisscross the world’s seas need powerful drives: diesel engines with outputs of up to 110,000 PS and as many as 14 cylinders.

The shaft that drives the propeller has a diameter of about 600 mm, weighs up to 300 tonnes, and rotates 84 times a minute. The shaft rests inside hydrodynamic bearings that are naturally subject to heavy wear.

This is because the shaft is in direct contact with and slides over the bearing’s surface. A film of lubricant reduces the inevitable friction, but doesn’t develop fully until the oil pressure rises.

Especially when engaging or disengaging the shaft, the protective film of oil is not yet or no longer sufficient to prevent direct contact between the surfaces. The affected parts of the bearing are therefore subjected to considerable friction and wear, which significantly reduces their life expectancy.

A commonly used way to improve the performance of these bearings is to cast their halves with an unbroken surface layer of a tribological, in other words wear-reducing, alloy.

The conventional process used for this is extremely labor-intensive: the metals are melted and worked at 700°C. Then, in a laborious finishing phase, around 90 per cent of the material is removed again to obtain the desired final shape. Little has changed in this process over the last century.

Today, latest-generation lasers can be used with a powder nozzle for direct metal deposition, yielding considerable benefits: the metal alloy is fed in the form of a dry powder via the nozzle coaxially to the laser and melted onto the inside of the concave steel bearing shells.

The laser permits accurate partial attachment of the alloy, says OR Lasertechnologie.

It is only necessary to apply the expensive alloy to about 20 per cent of the surface using this technique, compared to 100 per cent with the traditional casting method. Use of a laser also saves time and energy, since only a small amount of metal needs to be melted in each case.

The new generation of additive manufacturing is especially well-suited for bearings that are in constant use, have a large diameter, and are subjected to large bearing forces and high rotational speeds. It can also be used to inexpensively repair defective bearing shells and restore them to a like-new condition.

The ability to quickly change the alloy and apply coatings of nearly any kind of metal opens up incredible prospects for developing new products. AM enables completely new production processes that are able to flexibly accommodate customer wishes in a minimum of time.

Recently, the Berlin-based company of Admos Gleitlager began using a laser system from OR Laser. In addition to having more than 100 years of experience producing cast compound hydrodynamic sliding bearings, it is constantly engaged in improving its products and methods.

Admos is now taking a new approach to making sliding bearings: with a robot-assisted laser system, a six-kilowatt fiber laser, and two high-power coating heads in the form of powder nozzles. Something that was impossible with the conventional casting process is now becoming reality: namely the use of copper-based materials such as CuSn and CuPb.

One of the many advantages of the new approach is that different materials now bind more firmly to one another. All in all, the new method makes it possible to completely eliminate several steps while minimizing the required finishing work afterward.

Right after powering up the laser system for the first time, it became clear that it reduced materials costs by between 50 per cent and 80 per cent thanks to resource-efficient application. The energy costs are also 50 per cent to 70 per cent less than for conventional casting of alloys.

Jörg Hosemann, the CEO of Admos Gleitlager, says: “The new laser system opens up a whole new world of possibilities for us: faster production and delivery at short notice, as well as enormous potential for slashing costs. I expect the investment in new laser equipment to pay for itself in no time.”

Quelle: https://roboticsandautomationnews.com/2016/09/16/additive-manufacturing-revolutionising-shipbuilding-says-or-laser/7205/ vom 05.05.2017

Optimierung der Brennstoffzellentechnik

TU Wien findet Lösung: So leben Brennstoffzellen länger

Wiener Forscher haben herausgefunden, warum Hochtemperaturzellen mit neuartigen Kathoden mit der Zeit immer ineffektiver werden: Strontium verwehrt dem Sauerstoff den Zutritt. Und eine Lösung für das Problem haben die Wiener auch.

Mit gepulsten Lasern wird die passende Oberfläche erzeugt

Mit gepulsten Lasern wird die Oberfläche der Brennstoffzelle gezielt verändert.

Foto: TU Wien

Keramische Brennstoffzellen, die bei einer Temperatur von 450 bis 1.000 °C arbeiten, haben den höchsten Wirkungsgrad. Die hohe Temperatur macht den Umgang mit ihnen allerdings nicht leicht. Für den mobilen Gebrauch, etwa in Elektroautos, sind sie ungeeignet. Es gibt Werkstoffe, etwa das exotisch klingende Strontium-dotierte Lanthancobaltat (LSC), die die Zelle auch bei niedrigeren Temperaturen arbeiten lässt. Doch die ermüden mit der Zeit, weil zu wenig Sauerstoff aus der Luft zum Reaktionsraum vordringt.

Einladende Oberfläche

Jetzt haben Wissenschaftler der Technischen Universität Wien das Problem gelöst. Ghislain Rupp vom Institut für Chemische Technologien und Analytik und sein Team vermuteten, dass es vor allem auf die Oberfläche des Materials ankommt.

An manchen Stellen der Oberfläche kann Sauerstoff viel leichter eindringen als an anderen.

Foto: TU Wien

Sie muss für Luftsauerstoff gewissermaßen einladend wirken, damit dieser sich einlagert, um durch das Material hindurchzuwandern und den Reaktionsraum zu erreichen. Hier verbindet er sich mit Wasserstoff. Dabei entstehen Strom und Wärme sowie Wasser als „Abfallprodukt“.

Laserpulse modifizieren die Kathode

Die Forscher entwickelten ein Verfahren, mit dem sie die Oberfläche gezielt verändern und die Auswirkungen auf Sauerstoff-Aufnahmefähigkeit messen konnten. „Mit einem Laserpuls verdampfen wir verschiedene Materialien, die sich dann in winzigen Mengen an der Oberfläche anlagern“, erklärt Rupp. „So können wir fein dosiert die Zusammensetzung der Kathoden-Oberfläche modifizieren und gleichzeitig beobachten, wie sich dabei der Widerstand des Systems verändert.“ Dieser Widerstand ist entscheidend für die Brauchbarkeit des Materials als Kathode in der Brennstoffzelle.

Strontium macht sich selbstständig

Das Team experimentierte mit unterschiedlichen Materialien. Dabei stellten sie beispielsweise fest, dass eine Überdosis Strontium an der Oberfläche schadet. Ganz ohne Strontium, das unter anderem in Feuerwerkskörpern genutzt wird – es sorgt für eine Rotfärbung – geht es allerdings nicht. Es kommt auf die Verteilung vor allem an der Oberfläche an. „Wenn dort Strontium-Atome dominieren, wird Sauerstoff nur sehr schwer eingebaut“,sagt Rupp. Kobalt dagegen wirkt einladend auf die Sauerstoffatome. Hier funktioniert die Einlagerung gut.

Mit dieser Erkenntnis konnten sich die Wiener Forscher auch erklären, warum das Material mit der Zeit für Sauerstoff immer undurchlässiger wird. Während des Betriebs der Brennstoffzelle wandert Strontium aus dem Inneren der Keramik an die Oberfläche und überdeckt die Kobaltzonen. Für den Sauerstoff schließt sich gewissermaßen langsam die Tür.

Technischer Einsatz rückt näher

„Wir sind damit dem technischen Einsatz des Materials LSC für Brennstoffzellen einen wichtigen Schritt näher gekommen“, glaubt Rupp. „Unsere neue Untersuchungsmethode, die hochpräzise Beschichtung mit elektrischer Vermessung vereint, wird sicher auch in anderen Bereichen der Festkörperionik noch eine wichtige Rolle spielen.“

Welche Temperaturen erreichbar sind ist noch offen. Zudem müssen die Forscher jetzt einen Weg finden, die Wanderbewegung des Strontiums zu stoppen, zumindest aber zu verhindern, dass die aufstrebenden Strontiumatome das Kobalt überlagern. Zum Team gehören neben Rupp Professor Jürgen Fleig und eine Gruppe um Professor Andreas Limbeck, beide vom Institut für Chemische Technologien und Analytik der TU Wien.

Diese Drohne wird mit Strom aus Brennstoffzellen angetrieben: Sie kann etwa zwei Stunden in der Luft bleiben.

Foto: Intelligent Energy

 

Und hier finden Sie noch eine Geschichte zu Brennstoffzellen: Das britische Unternehmen Intelligent Energy hat eine Drohne mit einem Wasserstoffantrieb entwickelt. Statt normaler Akkus hat sie Brennstoffzellen an Bord. Der Antrieb sitzt oben auf dem Flugobjekt und wiegt mit Tank nur 1,5 kg. Das ist zwar mehr als ein Batteriepack, aber seine Reserven sind trotzdem deutlich größer. Zwei Stunden soll die Drohne in der Luft bleiben können.

Diesen SUV mit Brennstoffzelle bringt Hyundai 2018 auf den Markt. Von dem Auto will Hyundai mehrere Tausend Fahrzeuge pro Jahr in Serie produzieren.

Foto: Hyundai

Und Hyundai bringt schon 2018 ein Auto mit Brennstoffzelle auf den Markt, das eine Reichweite von 800 km hat.

Von Wolfgang Kempkens
Quelle: http://www.ingenieur.de/Themen/Forschung/TU-Wien-findet-Loesung-So-leben-Brennstoffzellen-laenger vom 05.05.2017