Schlagwort-Archive: 3D-Drucken

Weltweit erstes pumpendes Kunstherz aus dem 3D-Drucker präsentiert

Züricher Forscher präsentieren das erste künstliche Herz aus dem 3D-Drucker, das pumpt wie ein menschliches Herz. Allerdings hält es noch keinen Belastungen stand.

Kunstherz

Das Silikonherz aus Zürich stammt aus dem 3D-Drucker.

Foto: Zurich Heart

Das Kunstherz aus dem 3D-Drucker

Das gedruckte Organ besteht aus Silikon und sieht aus, wie man sich ein Herz so vorstellt. Nur eben cremeweiß statt blutrot. Ziel des Entwicklers Nicholas Cohrs, Doktorand in der Gruppe für Funktionelles Material-Engineering war es von Beginn an, „ein Herz zu entwickeln, das ungefähr die gleiche Größe hat, wie das eines Patienten und welches das menschliche Herz in Form und Funktion so gut wie möglich imitiert“.

Optisch ist das jedenfalls gelungen und auch das Gewicht dürfte passen: Das Kunstherz wiegt rund 390 Gramm. Im Innern ist das Silikon-Organ unterteilt in eine linke und eine rechte Herzkammer, die von einer weiteren Kammer getrennt wird. Diese mittlere Kammer ist das eigentliche Herzstück des Kunstorgans. Sie ahmt die Muskelkontraktionen des menschlichen Herzens mit Luftdruck nach und pumpt so die Flüssigkeit aus den nebenstehenden Kammern. In der Theorie funktioniert das, wie dieses Video zeigt.

Als Spenderorgan ungeeignet

In der Praxis hat sich das Kunstherz noch nicht bewährt. Belastungstests konnte es bisher nur eine halbe bis dreiviertel Stunde standhalten, das sind ca. 3000 Schläge, wie Maschinenbauer Anastasios Petrou vom Lehrstuhl für Produktentwicklung und Konstruktion der ETH Zürich zeigte. Die Forscher weisen deshalb auch darauf hin, dass es sich bei ihrem Versuch um einen Machbarkeitstest handelt. „Unser Ziel war nicht, ein implantierbares Herz vorzustellen“, sagt Cohrs, „sondern bei der Entwicklung von künstlichen Herzen in eine neue Richtung zu denken.“

Anzeige

Bedarf an Kunstherzen wäre hoch

Neben all den anderen Kunstorganen werden auch Herzen dringend benötigt. Rund 26 Millionen Menschen weltweit warten auf ein geeignetes Spenderherz, weil sie selbst an Herzinsuffizienz leiden. Die Zahl der Spenderorgane reicht jedoch bei weitem nicht aus. Und die Mechanik bisheriger Herzprothesen ist störungsanfällig. Insofern ist das weiche und formbare Kunstherz eine Option, an der die Forschung ansetzen kann, um Patienten mit Herzproblemen künftig tatsächlich besser helfen zu können.

Nicht der erste Versuch, Organe zu drucken

Münchner Studierende der Hochschulen LMU und TUM hatten im November 2011 einen 3D-Drucker und eine Biotinte vorgestellt, mit denen sich lebende Zellen zu Organen formen lassen sollten. Es ist neben dem jetzt vorgestellten Verfahren der ETH Zürich ein weiterer Baustein auf dem Weg hin zu einem künstlichen, implantierbaren Herz. Einen Schritt weiter sind die Wissenschaftler mit Hautzellen. Anfang des Jahres gelang es spanischen Forschern, menschliche Haut zu drucken, die für Implantationen nutzbar sein soll.

Die Forschungsergebnisse der Züricher Forscher erschienen zuerst im Fachmagazin Artificial Organs.

Von Lisa Schneider
Quelle: http://www.ingenieur.de/Fachbereiche/Medizintechnik/Weltweit-erstes-pumpendes-Kunstherz-3D-Drucker-praesentiert vom 20.07.2017

Graphen und seine Eigenschaften

Graphen-Schaum ist so viel stabiler als Stahl

Graphen ist wirklich ein Wundermaterial: Jetzt ist es gelungen, einen Schaum aus Graphen herzustellen mit ganz erstaunlichen Eigenschaften. Der Schaum ist zwar federleicht, aber um ein Vielfaches stabiler als Stahl. Wie das kommt?

Gyroid-Modell aus dem 3D-Drucker

Gyroid-Modelle aus dem 3D-Drucker wie dieses wurden benutzt, um die Stärke und mechanischen Eigenschaften eines neues leichten Materials zu testen.

Foto: Melanie Gonick/MIT

Graphen ist ein zweidimensionales Nanomaterial. Nur eine Atomlage dick besitzt die Kohlenstoffvariante lediglich in Breite und Länge eine Ausdehnung. Forscher des Massachusetts Institute of Technology (MIT) haben jetzt ein schwammartiges Material aus Graphen konstruiert, das nur rund fünf Prozent der Dichte von Stahl besitzt, aber zehnmal so stark ist. Es wurde mit einem hochauflösenden 3D-Drucker hergestellt.

Lücken in der Erforschung

Zwar gilt Graphen ja ohnehin unter anderem wegen seiner Härte als Wundermaterial, doch ist es bisher nur teilweise gelungen, diese Stabilität auf nutzbare dreidimensionale Graphen-Materialien zu übertragen.

Die Illustration zeigt die Ergebnisse der Simulationstests zur Zug- und Druckfestigkeit der 3D-Graphen-Struktur.

Foto: Zhao Qin

 

Einer der Gründe dafür: Bisher war nicht bekannt, welche Eigenschaften ein dreidimensionaler Graphen-Schaum braucht, um leicht und doch stabil zu sein. Das wollten Prof. Zhao Qin und seine MIT-Kollegen herausfinden und untersuchten dafür die Struktur von Schäumen und Gittern aus Graphen.

Graphen-Würfel mit Löchern

Dafür konstruierte das MIT-Team zunächst mithilfe sehr genauer Computermodelle einen Graphen-Würfel. Die Forscher schweißten 500 Blättchen des zweidimensionalen Graphen-Gitters mit 500 kugelförmigen Platzhaltern unter Hitze und hohem Druck zu dreidimensionalen, porösen Strukturen zusammen. Dabei lösten sich die Platzhalter auf, so dass an ihrer Stelle Hohlräume zurückblieben.

Dünnere Wände stabiler als dickere

Durch die Löcher ergibt sich ein Plus an Oberflächenstruktur, was dem Konstrukt Festigkeit verleiht, andererseits sorgen die Hohlräume für ein niedriges Gewicht. Tests ergaben, dass dieser Graphen-Schaum zehnmal stabiler und zugfester ist als Stahl, obwohl er nur fünf  Prozent von dessen Dichte besitzt.

Es zeigte sich bei den Tests aber auch, dass es die Würfel mit dünneren Wänden waren, die sich deutlich stabiler zeigten, als diejenigen mit dickeren Wänden. Letztere explodierten förmlich, als die Gewichte auf sie drückten. Die dünnere Variante hingegen behielt ihre Form und fiel kontrolliert zusammen.

Großes Potenzial

Die MIT-Forscher erklären das Versuchsergebnis damit, dass die dickeren Wände die durch den Druck ausgeübte Kraft als Spannungsenergie speichern und dann auf einmal freigeben, während die dünneren Wände kontinuierlich verformt werden. Ihre Erkenntnis: Graphen spielt zwar als Material für die Härte eine Rolle, aber entscheidender ist die geometrische Form.

„Man kann das Graphen durch irgendein anderes Material ersetzen. Die Geometrie ist der dominante Faktor. Sie hat das Potenzial, viele Dinge zu verändern“, sagt Markus Buehler, Chef der Abteilung Civil and Environmental Engineering am MIT.

So könnte die vom MIT entwickelte Struktur auch für Kunststoffe und Metalle genutzt werden, um ultraleichte, widerstandsfähige Materialien zu kreieren, etwa für den Bau von Brücken. Superleichte und ultrastabile Materialien wären auch optimal einsetzbar im Flugzeug- und Automobilbau gewünscht. Und nicht nur da.

Kleinste Glühlampe der Welt

Sie möchten mehr über Graphen erfahren? Hier stellen wir Ihnen eine industriefähige Lösung zur Produktion von Graphen vor, die von Forschern aus Aachen und Jülich entwickelt wurde.

Á

Kleinste Glühlampe der Welt: Sie besteht aus einem Graphenfilament zwischen zwei Elektroden. Das Material hält Temperaturen von mehreren Tausend Grad Celsius aus.

Foto: Young Duck Kim/Columbia Engineering

Und an dieser Stelle berichten wir über die kleinste Glühlampe der Welt, die aus einem Graphenfilament zwischen zwei Elektroden besteht. Das Material hält Temperaturen von mehreren Tausend Grad Celsius aus.

Von Martina Kefer
Quelle: http://www.ingenieur.de/Themen/Forschung/Graphen-Schaum-so-stabiler-Stahl
vom 20.01.2017

Baugruppenoptimierung durch Teilereduktion mit 3D-Drucktechnik

Statt 900 nur noch 16 Teile Ein Drittel des neuen GE-Triebwerks stammt aus dem 3D-Drucker

Der amerikanische Flugzeugmotoren-Hersteller General Electric setzt stärker auf 3D Druck als bislang jeder Konkurrent in der Welt: Vom neuen ATP-Turboprop-Triebwerk kommt mehr als ein Drittel aus dem 3D Drucker. Dieser Motor wird in das ebenfalls neue Business-Flugzeug Denali des amerikanischen Herstellers Textron Aviation eingebaut.

In die neue Cessna Denali des amerikanischen Herstellers Textron Aviation kommt ein ATP-Turboprop-Triebwerk von General Electric. Das Besondere: Ein Drittel der Komponenten stammt aus dem 3D-Druck mit Metallpulver.

General Electric Aviation, der größte Flugtriebwerk-Hersteller der Welt, beschäftigt sich schon seit 2010 mit dem 3D Druck von Motor-Komponenten. Zu den ersten in großer Serie produzierten Teilen gehören die Einspritzdüsen aus Kobalt-Chrom für die neuen “Leap”-Motoren, die von General Electric im Rahmen des Joint Ventures CFM mit Safran in Frankreich für den Antrieb von Verkehrsflugzeugen – darunter auch der Airbus A320neo – hergestellt werden. Bei dem neuen ATP-Motor für sehr viel kleinere Flugzeuge ist General Electric einen anderen Weg gegangen und hat dabei den 3D Druck von Beginn an in die Entwicklung des Motors mit einbezogen. Das begann schon beim Design.

Dieser neue Motor wird gegenwärtig im GE-Testzentrum in Prag in Tschechien ausgiebig getestet. Dort hat General Electric den größten Teil der Entwicklung von Turboprop-Triebwerken konzentriert. Zugleich ist Prag auch der Sitz des Geschäftsbereichs ATP-Motoren (Advanced Turboprop) geworden.

Ungleich weniger einzelne Teile im Motor

Wie Chefingenieur Mohamed Ehteshami von ATP erläutert, ist es durch den 3D Druck möglich geworden, in diesem Motor mit sehr viel weniger nicht-beweglichen Komponenten auszukommen. Die Zahl dieser Teile ist zunächst von mehr als 900 auf nur noch 16 reduziert worden.

Á

Beim neuen Turboprop für die Cessna Denali setzt der amerikanische Triebwerkshersteller GE Aviation noch mehr als bisher auf additive Fertigung.

Foto: GE Aviation

Das hat für diese Teile zu einer Gewichtseinsparung von 35 % geführt. Während der Entwicklung erwies sich diese Möglichkeit zur Komponenten- und damit auch Gewichtseinsparung als so gravierend, dass General Electric kurzerhand den Entwicklungsprozess temporär stoppte, um den Motor im Design noch stärker in Richtung auf gedruckte Teile auszurichten.

Dabei gelang es schließlich insgesamt 855 Einzelteile durch nur noch zwölf gedruckte Komponenten zu ersetzen. Das reicht vom Motor-Rahmen über die Brennkammer-Auskleidung und über den Ölsumpf-Behälter bis hin zu den Wärmetauschern und der Abgas-Anlage.

Motor und Flugzeug sind insgesamt leichter geworden

Die Konzentration auf sehr viel weniger und damit schließlich auch insgesamt leichtere Komponenten hat dann dazu geführt, dass das komplette Denali-Flugzeug von Cessna Textron allein durch den sehr viel leichteren Motor insgesamt fünf Prozent weniger wiegt. Wie Ehteshami anfügt, führt das wiederum als Konsequenz zu einem Rückgang des spezifischen Treibstoffverbrauchs des Denali-Flugzeugs um ein Prozent.

ÁDas Light Rider der Airbus-Tochter APWorks ist ein Elektromotorrad, dessen Rahmen im 3D-Drucker entstanden ist und ganze 6 kg wiegt.

Auch Rolls-Royce nutzt den 3D-Druck für die Herstellung großer Triebwerkteile. Einen Artikel dazu finden Sie hier. Und viele spannende Geschichten rund um den 3D-Druck verbergen sich hinter diesem Link.

Von Peter Odrich
Quelle: http://www.ingenieur.de/Themen/Flugzeug/Ein-Drittel-neuen-GE-Triebwerks-stammt-3D-Drucker vom 28.11.2016